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A mechanics-based model is developed to predict the swelling pressure in perfluorosulfonic acid (PFSA)
ionomer membranes during water uptake. The PFSA membrane is represented as a two-phase system,
where the water-filled hydrophilic domains are dispersed throughout the hydrophobic polymer matrix.
Two representative volume elements (RVEs) are used to represent the nanostructure: (i) a spherical RVE
with a spherical hydrophilic domain at the center, and (ii) a cylindrical RVE with a cylindrical hydrophilic
domain. The model starts with the non-affine swelling behavior of the membrane and interprets this as
a structural reorganization of the RVEs to characterize the microscopic deformation. Swelling pressure is
then determined as a function of water volume fraction and temperature for both RVEs. Using the
resulting relationship between the swelling pressure and water volume fraction, theoretical sorption
isotherms are generated. The results suggest that with increasing temperature, the constraining pressure
due to the deformation of the polymer region decreases and therefore, water uptake in a vapor-equili-
brated PFSA membrane increases. This relationship is consistent with previously-reported experimental
data. The model can also account for the effect of residual water in the membrane – which is associated
with the membrane’s thermal history – on the sorption behavior. The proposed continuum mechanics
model can serve as a tool for deeper understanding of the sorption behavior of PFSA by bridging the gap
between the molecular level descriptions and the experimental observations of macroscopic swelling.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Ionomers are ion-containing polymers that exhibit unique
conductivity, permeability and electro-chemical properties. Ion-
omers are of great practical interest because of their extensive use
in electro-chemical devices [1–3]. Perfluorinated sulfonic acid
(PFSA) ionomers are of particular interest, since they are commonly
used as ion-conducting electrolytes in proton exchange membrane
fuel cells due to their inherent electro-chemical properties and
mechanical integrity [1,4,5]. Chemically, PFSA ionomer is composed
of a polytetrafluoroethylene (PTFE)-like backbone and (per-
fluorovinyl ether) side-chains terminated with sulfonic acid end-
groups (SO3

�), where exchangeable ions can attach. During fuel cell
operation, water is formed as a by-product. In the presence of
water, PFSA membranes swell, resulting in enhanced ion (e.g.
proton) conductivity, which is necessary to sustain desirable cell
performance [6–13]. However, in addition to adequate water
management, reliable, long-term operation requires mechanical
All rights reserved.
stability for the membranes and swelling also plays a key role in the
mechanical response of the fuel cell membranes [1,14–16]. Thus,
understanding the sorption behavior of PFSA ionomer membranes
and its effects on the mechanical properties remains a key issue to
the development and characterization of PEMFCs.

A number of studies of the morphology of swollen-PFSA
membranes suggest a phase-separated nanostructure where the
water molecules reside in hydrophilic domains, the so-called clus-
ters, embedded in a polymer matrix with sulfonic acid (SO3

�) end-
groups located along the interface [11,17–25]. In a dry PFSA
membrane, ionic SO3

� groups still cluster to minimize the free
energy [18,26,27]. This type of two-phase nanostructure was also
examined and verified in a number of theoretical studies [7,28–31].
However, the geometrical interpretation of the nanostructure is
still a subject of debate (for a discussion of the nanostructure see
Refs. [5,17,28]). For example, in addition to the spherical cluster
network model proposed earlier by Gierke, Hsu and co-workers
[19,32], there are other studies describing the nanostructure of
highly swollen PFSA as comprised of rod-like polymeric aggregates
with water pools residing among them [11,33] and, recently, as
parallel cylindrical water-filled nano-channels surrounded by
polymer backbone [28].
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In any case, the swelling of PFSA membranes is commonly
described as a microscopic process in which water molecules
attach to the hydrophilic sulfonic acid (SO3

�) end-groups to form
water-filled domains. These water-filled hydrophilic domains
are separated from the hydrophobic polymer matrix resulting in
a two-phase nanostructure as observed through a vast number
of scattering experiments [9,20–25,34–37]. Upon water uptake,
water molecules initially ionize the SO3

� groups and remain
bound to them. Additional water molecules are then free to
move through the ionomer, causing growth of the clusters and
consequently the macroscopic swelling of the membrane
[8,9,11,24,34,38–41].

As the clusters grow, their volume and surface area increase
leading to deformation of the surrounding polymer matrix. The
polymer matrix, in turn, exerts a counter force due to its elastic
deformation, thereby limiting the swelling [7,11,18,26,27,40–42].
Thus, the swollen state represents an equilibrium between two
opposing forces: (i) the osmotic swelling pressure driving the water
volume to increase, and (ii) the elastic deformation of the polymer
matrix which exerts a counter pressure on the water-filled
hydrophilic domains driving water volume to decrease
[11,18,20,30,40,41,43]. As a result of this interplay between water
uptake and matrix deformation during swelling, a continuous
structural reorganization and coalescence of the water-filled
domains occur at the nanoscale. Consequently, the magnitude of
the strain of the individual water-filled nano-domains is higher
than that of the overall macroscopic swelling strain of the material.
This relationship is referred to as non-affine deformation and has
been shown to occur for PFSA membranes by a number of studies in
literature [11,18–22,29,33–35]. Despite the growing body of
literature on the sorption behavior [7,8,10,24,34,35,38,40,44–50]
and nano-structural modeling and characterization [11,13,17–
22,28,29,31,33–36,39,49,51,52] of PFSA ionomers, the relationship
between the water uptake and nanostructure, temperature,
mechanical properties and membrane pretreatment is not well
established. Understanding of these issues requires a general, yet
fundamental model, which is the subject of this study. The
theoretical models available in the literature for PFSA use either
mechanical models (with spheres representing the water domains)
that assume affine swelling [18,41,53], or statistical approaches that
assume non-affine swelling [54]. In the current study, we will
develop a geometry-dependent mechanical modeling framework,
which starts with non-affine swelling and that can be used to
determine the relationship between the swelling pressure and the
water uptake, which is crucial to the characterization of the
sorption behavior of (PFSA) ionomers.
2. Previous models in literature

The theoretical models currently available in the literature for
describing the equilibrium swelling in polymers are largely based
on the statistical theory of rubber elasticity. One of the earliest
models, developed by Flory [55], assumes that the entropy gain,
due to the mixing of the polymer and solvent, is equal to the loss of
conformational entropy due to the stretching out of the polymer
chains. Following this assumption, the change in the free energy
due to the elastic deformation of the swollen polymer, DFel, can be
calculated for a given representation of the polymer chain length
distribution. The swelling pressure is then, P ¼ vðDFelÞ=vð1=fpÞ
with 1/fp¼ V/V0 being the reciprocal of the polymer volume frac-
tion, i.e. the ratio of the swollen volume to the initial dry volume
[55]. For example, for an isotropically swollen Gaussian polymer
network, with end-to-end polymer chain distance represented by
a Gaussian distribution, swelling pressure is [55]
P ¼ G
�

f1=3
p � 1

cfp

�
(1)
2

where G is the shear modulus of the polymer network. The
parameter c can be chosen to be either the ‘‘affine limit’’ (c¼ 1),
where there is an additional gain in the entropy due to the volume
change, or the ‘‘phantom limit’’ (c¼ 0), representing a hypothetical
network whose chains and junctions may move freely through one
to another. Analogous expressions for the free energy have also
been proposed for non-Gaussian network representations for
swollen polymers [43,56].

While there are a number of studies which relate the swelling
pressure increase with increasing water volume fraction, the
specific form of this relationship is different in different models
[43,53,56–61]. Most of these models are based on the assumption
of affine swelling, which means that there is no structural reorga-
nization at the molecular scale and that the junction points
between polymer chains move proportionally to the macroscopic
swelling deformation. However, as mentioned in Introduction, it
has been observed that PFSA ionomer membranes exhibit non-
affine swelling, i.e. there is structural reorganization and the strain
of the micro-domains is not the same as that of the macroscopic
strain. These affine models do not describe the non-affine swelling
behavior observed in PFSA membranes.

Dreyfus [27] developed a model for the adsorption of water
around an electrical charge surrounded by deformable polymer
matrix. Also, in their work on sorption in PFSA, Hsu and Gierke [18]
and Mauritz and Rogers [41], assumed the equilibrium swelling
pressure to be equal to the pressure required to increase the radius
of a spherical cavity embedded in an infinite elastic medium whose
modulus is equal to that of the polymer (i.e. PFSA membrane).
However, this simplification still does not take into consideration
the structural reorganization of the polymer chains and water
clusters during swelling, as discussed elsewhere [54]. Thus, the
classical elasticity approach cannot be used to determine the
swelling pressure in structures that exhibit a non-affine swelling
behavior.

A study that takes into account the non-affine swelling of PFSA,
was conducted by Freger [54] who developed an expression for the
free energy of a two-phase swollen-polymer by replacing the
assumed affine deformation of each chain in the Flory–Rehner
model [55] with the affine deformation of unit cells, which inflate
upon water uptake. In this model, the swollen matrix is represented
by polyhedral cells generated by Voronoi tessellation where each
cell contains one hydrophilic water-filled domain. During swelling,
the faces of each cell are assumed to undergo a shape-preserving
uniaxial compression such that the stretch ratio in the in-plane
directions is equal to the macroscopic dimensional change,
Lin-plane ¼ f�1=3

p , while the cells are compressed in the thickness
direction such that the cell volume remains constant. This set of
constraints results in an overall non-affine deformation for the
membrane. From this set of assumptions, the swelling pressure can
be expressed as [54]

P ¼ 2
3

G
�

f1=3
p � f7=3

p

�
: (2)

This model predicts vanishing pressure for a dry membrane and
a linear increase in the swelling pressure with volume change at
low water content as observed in previous studies [59,61].

In this paper, we will develop an alternative mechanics-based
model for the swelling pressure which begins with non-affine
deformation to characterize the effects of the structural
reorganization due to the coalescence of the water clusters. First,
we will discuss the two representative volume elements (RVEs) we
use to characterize the two-phase nanostructure of a swollen-PFSA
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membrane. The RVEs are based on the body of nano-structural
descriptions given in the literature. Then, a non-affine swelling
mechanical model is proposed for capturing the deformation of
PFSA membrane during swelling. From this, an expression for the
swelling pressure is developed as a function of the water volume
fraction, temperature and Young’s modulus of the dry membrane.
In order to further investigate the model parameters and material
properties used in the model, the proposed formulation is used to
obtain theoretical sorption isotherms for predried and non-pre-
dried membranes and a comparison of these, with data from the
literature is presented.

3. Proposed model

3.1. Assumptions

Our proposed model is based on the following assumptions:

(i) The nanostructure of PFSA membrane is homogenized and
represented by equal-sized RVEs of spherical or cylindrical
shape, with an inner domain of water surrounded by
a concentric, outer domain of polymer. The ratio of inner to
outer radius of the RVE can vary, and is determined by the
water volume fraction.

(ii) Non-affine swelling of the membrane is used as input to the
model. Consequently, the outer radius of the RVE is determined
based on the relationship between the inter-cluster distance
and the macroscopic water volume fraction (which will be
described in detail in Section 4). The non-affine swelling
behavior is assumed to be independent of temperature.

(iii) Non-affine deformation is here associated with the structural
reorganization at the nanoscale [11,18–21,34,35]. Alternatively,
this type of deformation could also be attributed to the
lamellar dilution of rod-like particles [33] or to randomness in
the nanostructure at different scales.

(iv) Swelling is assumed to be a quasi-static process such that the
membrane is in equilibrium at each given water volume
fraction. The instantaneous size of the RVE is determined
accordingly, by considering the coalescence of the clusters.
However, we do not attempt to calculate how the equilibrium
is reached or how the structural reorganization occurs. Thus,
molecular level electro-chemical interactions among the
water molecules and, ionic groups and polymer matrix are not
considered here.

(v) The deformation behavior of the polymer matrix, due to the
growth of the clusters, is modeled by idealized elastic
mechanical springs without explicit consideration of the
molecular structure of the polymer (e.g. thermodynamical
treatment of the polymer chains).
Fig. 1. (A) A representative sketch for the composite sphere assemblage approach [62]
and the representative volume elements (RVEs) for the nanostructure of the swollen-
PFSA membrane: (B) Spherical RVE (S-RVE) and (C) the cylindrical channel, respec-
tively. (D) Detailed sketch for the position of the elastic spring (on any orientation)
with corresponding cluster and RVE radii given in dry and swollen states.
3.2. Representative volume element

As mentioned earlier, several models exist in the literature for
the nanostructure of PFSA membranes. There appears to be a lack
consensus among researchers [5,17,28], so we will study two
commonly used models (i) spherical cluster model, and (ii) cylin-
drical channel model. Therefore, we will also be able to investigate
the effect of the model geometry on the swelling behavior.

3.2.1. Spherical cluster model
One of the earliest models for the nanostructure of PFSA ion-

omers is the cluster-network model proposed by Gierke and Hsu
[9,18,19]. They used a simplified geometric representation: a poly-
mer matrix containing a cubic array of spherical, inverted micellar
clusters which grow upon water uptake [19]. This growth corre-
sponds to an increase in the volume of the cubic lattice, causing an
increase in the number of SO3

� groups per cluster due to the cluster
coalescence (i.e. non-affine swelling).

In this study, the membrane volume is assumed to be nearly
filled by identical, uniformly distributed spherical RVEs (S-RVEs),
with the small remainder of the volume assumed to have identical
properties to the bulk material (Fig. 1A). This structure is similar to
the composite sphere assemblage concept of Hashin [62] who,
using this approach, showed that the volume averaged stress–
strain relation for the isotropic elastic body also represents the
deformation of each of the composite spheres. For PFSA
membranes, this assumption implies that the clusters have some
local order as suggested by Dreyfus et al. [22]. Each spherical RVE
has an (outer) radius b and contains a spherical cluster of (inner)
radius a, where the water molecules and the sulfonic acid groups
reside (Fig. 1B). The inner and outer radii of the RVE can change, but
due to the geometrical assumptions, their ratio is always equal to
the cube-root of the volume fraction of the cluster, fc,

�a
b

�n
¼ fc ¼ fw þ fSO3

; (3)

where fw and fSO3
are the volume fractions of water and sulfonic

acid groups, respectively, and n¼ 3 is the geometric factor.
In our previous work [63] we developed a nano-mechanics

model to describe the variation of Young’s modulus for swollen-
PFSA membranes. In that study, we found that the inclusion of
small cylindrical channels connecting the spheres is the best
representation of the nanostructure for predicting Young’s
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modulus in humid air. However, in this study, we will use this
simplified spherical RVE without channels to model the nano-
structure of PFSA membranes for the purpose of calculating the
swelling pressure.

3.2.2. Cylindrical channel model
In a recent study, Schmidt-Rohr and Chen [28], numerically

simulated previously published scattering data of water-swollen
PFSA membranes to evaluate and compare the existing morpho-
logical models. They concluded that the nanostructure of highly
swollen-PFSA membranes can be best described by parallel, cylin-
drical water channels randomly distributed in a polymer backbone
with the hydrophilic SO3

� ions located along the water–polymer
interface. During water sorption, they concluded that the channel
diameters increase and coalesce with neighboring channels. They
reported that the water channel diameters in the water-swollen
membrane are between 1.8 and 3.5 nm, with an average of 2.4 nm.
Based on this nanostructure, we propose a second, cylindrical RVE
of length h that contains an inner cylinder occupied by water and
hydrophilic end-groups surrounded by the hydrophobic polymer
matrix backbone (Fig. 1C). Following an approach similar to that of
spherical RVEs, the final nanostructure of PFSA membrane can be
represented by identical, uniformly distributed cylindrical RVEs (C-
RVEs) with the small remaining volume assumed to have identical
properties to the bulk material. For this geometry, n¼ 2 in Eq. (3).
Note that, for a dry membrane, Eq. (3) gives the inner and outer
radii in dry state, adry and bdry, respectively, for the cluster volume
fraction fc

dry.

3.3. Characterization of non-affine swelling

The size and the shape of the hydrated ionic aggregates in PFSA
membranes are generally investigated through (X-ray or neutron)
scattering experiments. It is well established that the swelling of
PFSA membranes is non-affine. For example, the microscopic
swelling strain (defined as the inter-cluster distance) is much larger
than the macroscopic swelling strain (which is related to the water
content of the membrane) [11,18–21,29,33–35]. In this study, since
we assume that the volume is nearly filled by close-packed RVEs of
the same size, the inter-cluster distance is the outer diameter of the
RVEs, 2b. Thus, upon water uptake, the dry radius of the spherical
RVE, bdry, increases to the swollen radius for a given polymer
volume fraction, b¼ b(fp), and therefore the microscopic swelling
strain can be defined as:

3s ¼ b
bdry
� 1: (4)

We can also define the macroscopic swelling strain, Ss, as:

Ss ¼ f�1=3
p � 1 ¼

�
V
Vp

�1=3

�1 (5)

where V and Vp are the swollen and initial (dry) volumes of the
polymer, respectively. Consequently, fp is the polymer volume
fraction of the swollen membrane. Now, let the relationship
between macroscopic and microscopic swelling strains be

3s ¼ kSs ¼ k
�

f�1=3
p � 1

�
; (6)

where k is the non-affine swelling ratio. We can use Eqs. (4)–(6) to
describe the cylindrical RVE model as well, by assuming that the
swelling strain in the thickness direction is equal to the strain in in-
plane directions, i.e. b/bdry¼ h/hdry with hdry being the length of the
cylindrical channel RVE in the dry state.
When the membrane is completely dry (i.e. no water resides in
the membrane initially), we assume that the clusters contain only
the SO3

� groups. Therefore, fc
dry must be equal to the SO3

� volume
fraction of a dry PFSA membrane, i.e.

fdry
c ¼ VSO3

Vp
¼ VSO3

EW=rp
; (7)

where VSO3
and Vp are the molar volumes of the ionic SO3

� groups
and the polymer, respectively, rp is the density of the dry polymer,
and EW is the equivalent weight of the membrane, given in grams of
dry polymer per mole of SO3

� group. Furthermore, since the terms
on the right hand side of Eq. (7) are known for a given ionomer
(VSO3

can be taken to be 40.94 cm3/mol [19]), the cluster volume
fraction can be determined directly from the water volume fraction,
fw,

fc ¼ fw þ ð1� fwÞfdry
c : (8)

Because of the structural reorganization associated with the non-
affine deformation, the volume of the polymer in the RVE must
increase during water uptake, such that the (microscopic) polymer
volume fraction of the RVE is always equal to the membrane’s
overall (macroscopic) polymer volume fraction. This assumption
automatically takes into account the change in the number of
sulfonic acid groups per RVE due to coalescence of clusters. Since
the number of SO3

� groups per cluster (or RVE), NSO3
, is always

related to the polymer volume within that RVE, the increase in NSO3

from the dry state to any swollen state can be calculated from the
volume change of the RVE and its polymer volume fraction, i.e.

NSO3

Ndry
SO3

¼
fp

fdry
p

VRVE

Vdry
RVE

¼
fp

fdry
p

�
b

bdry

�3

¼
fp

1

h
kðf�1=3

p � 1Þ þ 1
i3
:

(9)

where fp
dry¼ 1 in a dry polymer. When k¼ 1 in Eq. (6), the micro-

scopic and the macroscopic swelling both are equal to f�1=3
p � 1,

which represents affine swelling. In this case, the clusters do not
coalesce ðNSO3

¼ Ndry
SO3
Þ. However, if k> 1, then the number of SO3

�

groups per cluster increases during water uptake ðNSO3
> Ndry

SO3
Þ due

to the coalescence of the clusters (i.e. structural reorganization). As
a result, both the total volume and the total number of SO3

� groups
in the RVE increase during swelling, which is in agreement with the
observations from various experiments [11,18,19,21,22,35] and the
degree of cluster coalescence is therefore attributed to the non-
affine swelling ratio k. The derivation of Eq. (9) is purely geomet-
rical, and based on the observed phenomenon of non-affine
swelling deformation during sorption. The energy associated with
coalescence is not taken into account. During desorption of a satu-
rated membrane, the compressive pressure in the polymer matrix
will decrease, and the clusters will de-coalesce. Given a detailed
description of this behavior, the model could equally well predict
pressures during desorption. An in-depth investigation on the
modeling of sorption–desorption cycles is left for future research.

3.4. Proposed model for swelling pressure

We now propose a method to calculate the swelling pressure as
a function of water (or polymer) volume fraction, using a discrete-
parameter mechanics approach, based on the nanostructure
described earlier. In order to characterize the deformation of the
polymer matrix due to the growth of the clusters, the polymer
matrix within the RVE is idealized mechanically, as linear spring
elements. The spring constant is related to Young’s modulus of the
polymer matrix, Epm, thus allowing us to calculate a force per unit
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area per unit length change for the deformation. Each linear spring
is placed between virtual nodes located at the surface of the cluster
(at r¼ a) and the outer surface of the RVE (at r¼ b). Here, the node
is shared by another spring that belongs to the neighboring RVE
(Fig. 1B,D). Thus, the polymer matrix is comprised of nodes that can
move in a non-affine manner during swelling and are connected by
linear spring elements. In general, the PTFE-based polymer matrix
is comprised of polymer chains and crystallites. However, the exact
nature of the polymer matrix is irrelevant to our calculations, since
we model it as elastic springs. This is analogous in some ways to the
classical characterization of the deformation of polymer chains in
elastically deformed polymers [64–66].

For a dry membrane, we assume that each spring is initially
stress-free and has a length of Ddry¼ bdry� adry. When the
membrane is exposed to an external water (vapor/liquid) source,
water uptake begins and the radii of the cluster and the RVE
increase to a and b, respectively. Thus, the deformed length of the
spring upon water uptake is D¼ b� a (Fig. 1D). Then, with the help
of Eq. (3), the stretch ratio in the spring due to the swelling, Lpm,
can be written as

Lpm ¼
D

Ddry
¼ b� a

bdry � adry
¼ b

bdry

2
4 1� f1=n

c

1� fdry1=n

c

3
5: (10)

where fc
dry is the cluster volume fraction in the dry membrane.

Alternatively, the ‘‘dry’’ value can be replaced by any chosen initial
value to determine the relative stretch between any two states of
hydration. A compressive force is generated in the spring (polymer
matrix) due to the compressive radial strain of the material
between the clusters. The change in the compressive force per unit
area, can be defined as the swelling pressure, DP, in the RVE
(defined positive)

DP ¼ P � P0 ¼ �Epm
�
Lpm � 1

�
(11)

where Lpm � 1 is the strain in the deformed polymer matrix and P0

is the value of the pressure in a dry membrane which will be
a function of the thermal and mechanical histories. Therefore, we
will examine the change in the pressure, DP, which is related to the
change in the water content upon sorption.

Using Eqs. (4), (6) and (10), the change in swelling pressure in
Eq. (11) can be rewritten as

DP
Epm

¼
h
1þ k

�
f�1=3

p � 1
�i0@ 1� f1=n

c

1� fdry1=n

c

1
A� 1: (12)

It follows from Eq. (12) that the swelling pressure is only a function
of the water (or cluster) volume fraction for a given set of structural
properties, i.e. non-affine swelling ratio and RVE (spherical or
cylindrical water-filled domains).

In the above derivation, Epm is interpreted as Young’s modulus of
polymer matrix alone, since within the framework of this study, the
tendency of the cluster to grow is counter-balanced by the pressure
applied by the polymer matrix only (excluding the clustered ionic
groups). Therefore, Epm is the modulus of a hypothetical material;
the polymer backbone of the PFSA membrane (backbone and side-
chains), whose properties cannot be measured directly. However,
we can estimate the relationship between Epm and Young’s modulus
of dry membrane (backbone, side-chains and ionic groups), Edry,
which is a measurable bulk property. This relationship can be esti-
mated using the micro-mechanics approach in our previous work,
from the cluster volume fraction and the geometry of the RVE in the
dry state, and by assuming that the cluster (consisting solely of SO3

�

groups) has zero stiffness relative to the polymer backbone [63]. For
the RVEs used in this study, this relationship can be written in
a simplified, generalized form: Edry ¼ Epmð1� fdryðn�1Þ=n

c Þ where
n¼ 2 for the cylindrical RVE and n¼ 3 for the spherical RVE. This
approach to calculating Young’s modulus of PFSA membranes is
studied in detail in our previous work [63].
4. Results for swelling pressure

In generating results, we will focus primarily on PFSA
membranes of EW¼ 1100, for which the literature has the most
experimental sorption data [11,18–22,29,33–35]. In order to quan-
titatively characterize the non-affine swelling behavior of 1100 EW
PFSA membranes, the experimental scattering data from Fujimara
et al. [20], Dreyfus et al. [22] and Gebel [11] are used since among
the studies in the literature, these are the ones that explicitly report
the inter-cluster distance at various degrees of swelling. For
comparison purposes, data for 1200 EW PFSA membranes from
Gierke et al. [19] are also included and all the water content data are
converted to the macroscopic swelling strain, Ss ¼ f�1=3

p � 1
(assumed isotropic). The microscopic swelling strain, 3s, is calcu-
lated from the reported inter-cluster distance (or Bragg distance),
which is equivalent to the RVE outer radius in the models (Eq. (4))1

and plotted as a function of macroscopic swelling strain, Ss in Fig. 2.
The experimental data from the various researchers all follow
a similar linear trend with an average slope of 5.4–5.7. This slope
corresponds to the non-affine swelling ratio, k defined in Eq. (6).
Thus, in the following calculations we will use k¼ 5.6, which is the
same non-affine swelling ratio reported previously by Gebel [11].
Similar values can also be derived from more recently published
data in the literature. For example, the scattering data for PFSA
membranes by Rubatat et al. [33] suggest a value of k¼ 4.5–6.0 in
the range of water volume fractions considered here.

Assuming the non-affine swelling ratio of 5.6, the stretch in the
deformed polymer matrix, Lpm, is plotted as a function of water
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volume fraction for both RVEs in Fig. 3. At the microscopic level,
swelling causes compression of the polymer matrix in the radial
direction between the growing clusters. This behavior is accoun-
ted for in the model as radial springs where the strain in the
spring is always negative ðLpm � 1 < 0Þ. The change in the RVE
radius, b/bdry, and the change in the cluster radius, a/adry, (which
can be calculated using from b/bdry and Eq. (3)) are also included
in the figure for comparison. For non-affine swelling, the change in
the length of the spring results from the combination of two
mechanisms: (i) the increase in the cluster radius due to the water
uptake, which is always related to the RVE radius through the
cluster volume fraction; and (ii) the coalescence of the clusters
causing an additional increase in the radius of the RVE. For a given
water volume fraction, the rate of increase in the cluster radius is
always more than that of the RVE radius. This observation is in
agreement with the results of the clustering model developed by
Dreyfus [67] who showed that the cluster radius increases more
rapidly than the inter-cluster distance.

From Eq. (7), we can determine that, fdry
c ¼ 0:0762 for

EW¼ 1100 membrane. Therefore, the polymer matrix modulus in
terms of Young’s modulus of the dry membrane can be calculated
as Epm ¼ Edry=ð1� fdryðn�1Þ=n

c ÞhaEdry, where the proportionality
factor a comes out to be 1.22 for the spherical RVE (S-RVE) (n¼ 3)
and 1.38 for the cylindrical RVE (C-RVE) (n¼ 2). Consequently, we
can rewrite Eq. (12) in terms of Edry instead of Epm

DP
Edry

¼ a

8<
:
h
1þ k

�
f�1=3

p � 1
�i0@ 1� f1=n

c

1� fdry1=n

c

1
A� 1

9=
;: (13)

The predictions of Eq. (13) for non-affine swelling (k¼ 5.6) as
a function of water volume fraction are depicted as the dashed lines
in Fig. 4 for both the S-RVE and C-RVE. Affine swelling (k¼ 1, dotted
lines) predicts much higher pressures than non-affine swelling
(Fig. 4). We also include the predictions of Eq. (13) for Epm¼ Edry, by
setting a¼ 1 (shown by the solid lines). These results show how the
model predictions are affected if Young’s modulus of the dry
membrane, Edry, is used as the modulus of the elastic springs con-
necting the clusters rather than the modulus of the hypothetical
polymer matrix, Epm. This simplification has a relatively minor
effect on the swelling pressure results, showing that the effects of
the non-affine swelling ratio and RVE geometry are much more
significant than the effect from the modulus correction factor,
a (Fig. 4). The shear modulus of the dry membrane, Gdry, can also be
incorporated into the model, by using the relationship
Edry¼Gdry(1þ2n) where n is Poisson’s ratio (can be set to 0.5). The
relationship between the normalized swelling pressure, DP/Gdry,
and the water volume fraction is depicted in Fig. 5. For comparison,
the prediction of the model developed by Freger [54] from the
statistical theory of polymer elasticity is also included. The result of
this expression (shown in Eq. (2), [54]) falls between the spherical
and cylindrical RVEs in the current formulation.

In this work, we have replaced the polymer matrix material with
idealized elastic springs, instead of treating it as a continuum as is
done elsewhere in the literature [18,41,53]. For example, for the
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spherical RVE (Fig. 1B), the pressure field in the solid matrix for an
expanding cavity can be determined in spherically symmetric
coordinates using the theory of linear elasticity [68]. The problem
definition results in an affine solution and the average pressure in
the matrix is depicted by the open circles in Fig. 5. The resulting
pressure is similar to the predictions of the proposed model with
affine swelling (k¼ 1). Thus, we see that the limitation of the
classical elasticity approach comes from the assumption of an RVE
with a fixed quantity of polymer, which results in affine swelling
and therefore predicts unreasonably high swelling pressures.

In the previous paragraphs, we discussed the relationship
between the normalized swelling pressure and the water volume
fraction. However, to calculate the actual values of the swelling
pressure requires knowledge of Young’s modulus of the dry
membrane. Using our experimental data [69] for Young’s modulus
of Nafion� 112 membranes2 (1100 EW) we showed in our previous
work [63] that the following empirical formula can be used to
approximate Young’s modulus of dry membrane in the tempera-
ture range of 25–85 �C:

Edry ¼ 1000� 2:5T (14)

where T is the absolute temperature. Within the framework of this
study, Eq. (14) suggests that for a given water content, the swelling
pressure will decrease with increasing temperature assuming the
parameters a and k are temperature independent.

In the literature, the water content in the membrane is usually
represented by l, the number of water molecules per SO3

� group.
For a given ionomer, the relationship between the water volume
fraction, fw, and the water content, l, is given by

fw ¼
l

Vp=Vw þ l
: (15)

where Vw and Vp are the molar volume of water (taken to be
Vw ¼ 18 cm3=mol) and the polymer ionomer (see Eq. (7)). The
water uptake behavior of PFSA membranes is typically character-
ized by sorption isotherms which define the relationship between
the water content, l, and the vapor activity of water in the
surrounding air, aw, (or relative humidity, RH) at a given tempera-
ture [5,24,40,42,44,45,70,71].

In equilibrium, the confining pressure applied by the polymer
matrix is balanced by osmotic swelling pressure, or the tendency of
external moisture to diffuse into the membrane and increase the
swelling. Therefore, once the relationship between the swelling
pressure and the water volume fraction is established, this rela-
tionship can be used in thermodynamic phase equilibrium equa-
tions to determine the sorption isotherms. Thus, in order to further
analyze the proposed swelling pressure formulation and to
understand the effects of the proposed RVEs and temperature
dependence on water uptake, we will compare our model predic-
tions to the sorption behavior of PFSA membranes based on the
theoretical, thermodynamic approaches used and discussed else-
where in the literature [40–42].

5. Investigation of sorption behavior

5.1. Thermodynamic modeling of sorption isotherms

For PFSA polymer and water in equilibrium, the difference
between the logarithms of the activity of the water external to the
2 Nafion� is a registered trademark of E.I. DuPont De Nemours & Co. Nafion�

membrane is a commercially available PFSA-based membrane commonly used in
fuel cell applications.
polymer, aw, and the activity internal to the polymer, ap, is
proportional to the product of the osmotic pressure, P, and the
molar volume of water, Vw [41,72]

RT ln aw ¼ RT ln ap þPVw; (16)

where T is the absolute temperature and R is the universal gas
constant. Thus, the phase equilibrium between the PFSA polymer
membrane and the water activity can be described by

ln
ap

aw
¼ �Vw

RT
P (17)

The water content within the membrane consists of chemically
bound water, lB, and free water, lF [24,40–42,51]. The water activity
within the membrane is approximately equal to the mole fraction
of the free water within the membrane, i.e. ap¼ lF(1þ lF) [40–42].

At equilibrium, the osmotic pressure is equal to the change in
the compressive pressure, DP, given in Eq. (13). Thus, the pressure
formulation proposed in the previous section can be used in Eq. (17)
by setting P¼DP. Consequently, the following implicit expression
(from Eq. (17)) can be used to analyze the sorption behavior of PFSA
membrane

lF

1þ lF ¼
l� lB

1þ l� lB ¼ aw exp
�
� Vw

RT
DPðfwðlÞ; TÞ

	
: (18)

The bound water as a function of water activity can be approxi-
mated using the expression given in the work of Choi et al. [40,42]
on their physicochemical treatise of the solvation of ionic groups in
PFSA membranes:

lBðawÞ ¼ 1:8
K1aw

1� aw

 
1� ðnþ 1Þan

w þ nanþ1
w

1þ ðK1 � 1Þaw � K1anþ1
w

!
: (19)

where the model constants are K1¼100 and n¼ 4–5 for PFSA
membranes with 1100 EW. For the swelling pressure term in Eq.
(18) the water volume fraction, fw, is converted to total water
content, l, not the free water lF: even though some water molecules
are thermodynamically bound, the entire swollen-ionic domains
are treated as zero-stiffness domains within the context of our
mechanics-based pressure modeling [63].

The Flory–Huggins theory for polymer solutions [55] can also be
used to describe the swelling equilibrium in PFSA membranes as
discussed elsewhere [42,71,73]. This model, however, has an
additional parameter, the so-called Flory–Huggins interaction
parameter, c, which characterizes the enthalpic energy of mixing
between the polymer and solvent. This parameter has to be
determined empirically. For PFSA membranes, the value for c has
been determined to be 1.0–1.5 in the literature [42,71]. If we use the
Flory–Huggins model with our pressure formulation, the resulting
sorption isotherms (not shown) turn out to be very similar to those
predicted by Eq. (18) (e.g. Fig. 6) if the interaction parameter is set
to c¼ 1.0–1.3 at 25 �C, which tends to further validate our model.
However, we will leave the full investigation of these relationships
for future work due to the temperature-dependent nature of c and
the lack of sorption data at various temperatures.

5.2. Effect of RVE geometry

We have solved Eq. (18) for PFSA membranes of EW¼ 1100 at
25 �C using the proposed mechanics-based swelling pressure
model for both the spherical and cylindrical RVEs. The resulting
sorption isotherms are depicted in Fig. 6 along with experimental
data for the water uptake of EW 1100 membranes from Zawod-
zinski et al. [8,38], Morris and Sun [10], Choi et al. [42], and the
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empirical models of Springer et al. [6] and Thampan et al. [44]. For
water activities below 0.50, the effect of the RVE geometry on the
water uptake behavior is negligible within the scale of the figure.
However, at higher water activities, the spherical and the cylin-
drical RVEs diverge, and the experimental data seem to shift from
the S-RVE predictions at intermediate activity (0.5< aw< 0.8) to
the C-RVE predictions at higher activities (aw> 0.8). A similar shift
has been observed in experimental sorption data of PFSA
membranes at around aw¼ 0.7–0.8 [8]. They attribute the region
with lower slope with the solvation of SO3

� ions with water, and the
region with higher slope to the swelling of the membrane with
additional free water [8]. Our results are also consistent with the
findings of Laporta et al. [24], who suggested that that the nano-
structure of the water phase in a swollen PFSA might be interme-
diate between the two limiting shapes of a sphere and cylinder.
5.3. Effect of temperature

The effect of temperature on water uptake can be investigated in
our model by inputting the empirical relationship between Young’s
modulus and temperature, Eq. (14), into the swelling pressure
formulation, Eq. (13) and using the resulting expression for the
pressure in Eq. (18). We will here focus on sorption from saturated
water vapor (aw¼ 1). However, it has been reported that [8,46,50]
the water content in predried3 membranes is similar, whether the
membrane is equilibrated in saturated water vapor or liquid water.
Thus, we will here adopt the results from a number of experimental
water uptake studies for predried PFSA membranes equilibrated in
liquid water and/or water vapor from Zawodzinski et al. [8,38],
Hinatsu et al. [45], Onishi et al. [46], and Thompson et al. [74].
According to these studies, the water content of the predried
membrane saturated with water is in the range of l¼ 12–20, in
close agreement with the predictions of our cylindrical RVE model
(Fig. 7). The results of our calculation are plotted in Fig. 7, which
shows that water uptake of a predried membrane saturated with
3 Predried here refers to membranes dried at 80–105 �C for 1–24 h (sometimes in
vacuum) after the standard pretreatment procedure. For details, interested reader is
urged to see the original publications.
water (aw¼ 1) increases with increasing temperature for both the
C-RVE and S-RVE. This prediction is consistent with the experi-
mental observations.

Onishi et al. [46] explained this temperature–water content
relationship, by noting that the predried membrane is initially free
of water, i.e. both bound and free water are absent, and therefore
somehow partially constrained, limiting its ability to uptake water.
They further explain that this apparent constraint relaxes with
increasing temperature and water content. Similarly, in a study by
Satterfield and Benziger [75] on the water sorption dynamics of
predried PFSA membranes, the rate of water sorption was found to
increase with increasing temperature, which they attributed to the
relaxation of the polymer matrix. Therefore, there is experimental
evidence to suggest that the water uptake is influenced by the
temperature effect on the behavior of the polymer matrix.

In this work, we have demonstrated a similar effect using our
mechanics-based model. According to our model, the increase in
water uptake with increasing temperature is due to the decrease in
Young’s modulus of the polymer matrix in the membrane. Thus, our
model predictions for idealized membrane coincide with the
sorption behavior seen in predried membranes, even though
pretreatment was not explicitly taken into account. Nevertheless, in
the model formulation, we assumed that the swelling pressure is
initially zero and that the clusters are completely dry before water
uptake begins. Similarly, the k value of 5.6, was determined based
on the initial inter-cluster distance in a dry membrane, not in
a membrane at ambient conditions [11,19,20,22,33]. Consequently,
our model was developed from a set of assumptions consistent
with a membrane in the predried state.

5.4. Effect of initial (residual) water in the membrane

As discussed in the previous section, the maximum water
content in previously predried membranes is similar whether the
membrane is equilibrated in water vapor or liquid water
[8,46,50,74]. In contrast to this, for membranes that are not pre-
dried (at elevated temperatures for a certain period of time), but
subjected to standard treatment procedure, the water content is
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l¼ 21–24 in liquid water [10,38,45,46]. This discrepancy has been
attributed to the thermal history of the polymer, which has been
shown to play a key role in the water uptake capability of PFSA
membranes [8,46]. Similar observations were actually made earlier
by Zawodzinski et al. [8], who suggest that predrying the
membranes leads to the breakup of the ionic clusters, whereas in
non-predried membranes, hydrated ionic clusters are present
initially. Therefore, the existence of any residual water in the (non-
predried) membrane influences the subsequent water uptake
behavior.

Because different researchers use different membrane
pretreatment procedures and several different experimental
measurement techniques, it is difficult to compare the available
sorption data in the literature, as pointed out by Onishi et al. [46].
Experimental data from Roche et al. [49], Laporta et al. [24] and Kim
et al. [34] for the sorption of non-predried PFSA from water vapor
are plotted in Fig. 8. It follows from the figure that water uptake for
non-predried membranes is higher than for predried membrane
(Fig. 6) for a given water activity.

In order to further investigate this phenomenon, we extend our
swelling pressure formulation for the case of non-predried
membrane by assuming that there exists a small amount of residual
(e.g. bound) water in the membrane initially. This means that,
initially, the cluster volume fraction is the sum of the volume
fraction of the SO3

� groups, fc
dry, and the initial water volume frac-

tion, fw
0 , i.e. f0

c ¼ fdry
c þ f0

w. As a result, the initial length of the
‘‘springs’’ changes and, according to Eq. (10), a different stretch will
be generated upon swelling. When water is already present in the
clusters, less additional pressure is generated in the polymer matrix
for a given amount of additional water. Following this idea, the
swelling pressure from Eq. (12) is recalculated (assuming all other
parameters are the same) and new sorption isotherms are gener-
ated (Fig. 8). The initial water volume fractions of (i) fw

0 ¼ 0.1, and
(ii) fw

0 ¼ 0.125 are used, corresponding to water content of l z 1
and l¼ 1.5–2.5, respectively. As seen from the figure, the proposed
model can capture the increased water uptake for the membranes
with initial water content. Therefore, our mechanics-based
modeling approach can account for the effect of residual water in
the membrane on the subsequent sorption behavior.
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Fig. 8. Predictions of the proposed model for the sorption isotherms of non-predried
PFSA membrane at room temperature with initial water volume fraction of fw

0 ¼ 0.10
and 0.125 for spherical RVE (S-RVE) and fw

0 ¼ 0.10 for cylindrical RVE (C-RVE). Results
for predried membrane (fw

0 ¼ 0) are also shown for S-RVE. For comparison, measured
sorption data for non-predried PFSA membranes are included from Roche et al. [49],
Laporta et al. [24] and Kim et al [34].
5.5. Effect of Young’s modulus of dry membrane

The effect of the membrane Young’s modulus in the dry state,
Edry, on its maximum water uptake capacity under saturated
conditions (at T¼ 25 �C) is depicted in Fig. 9. For a stiffer polymer
backbone, the elastic counter pressure exerted on the water
domains increases, resulting in less water uptake. The predicted
water content, l, also depends on the assumed RVE; cylindrical
water domains absorb more water than the spherical ones. The
effect of the relationship between the polymer backbone modulus
(Epm) and the dry membrane’s modulus (Edry) is also depicted in the
figure. When we assume that Epm¼ Edry, the model predicts more
water absorption than when we assume Epm¼ aEdry, (a¼ 1.22 for S-
RVE and 1.38 for C-RVE) since in the latter case, the backbone does
not contain the SO3

� ionic groups, and therefore has a higher overall
modulus.
6. Discussion

Within the framework of this study, the increase in the cluster
radius is due to the simultaneous increase in water content, l, and
increase in the number of SO3

� groups per cluster, NSO3
. However,

the increase in NSO3
, due to cluster coalescence (non-affine

swelling) has the effect of reducing the swelling pressure relative to
affine behavior. This phenomenon can be attributed to the releasing
of constraints in the polymer matrix, similar to the arguments by
Onishi [46] cited in Section 5.5. Also, NSO3

has been measured to be
26–30 for a dry (predried) Nafion 1100 membrane and 76–90 for
a swollen membrane at water volume fraction fw z 0.3 [18,19,21–
23] corresponding to a value of the ratio NSO3

=Ndry
SO3
¼ 2:5—3:5. The

current model predicts that NSO3
=Ndry

SO3
¼ 3:5 for fw¼ 0.3 (Eq. (9)

with k¼ 5.6) surprisingly consistent with the literature values.
A reduction in the non-affine swelling parameter, k, might

correspond to an increase in mechanical constraint. As a limiting
case, affine swelling (k¼ 1) may be attributed to the sorption of
a fully constrained membrane for which model predicts l¼ 5–7.
This value is slightly higher than the amount of bound water, and
much lower than that for unconstrained membrane (l¼ 13–15)
exhibiting similar trends with other model predictions [70,76].
However, in order to fully understand the physical implications of
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Fig. 9. Model predictions for the maximum water uptake capacity of the PFSA
membrane as a function of membrane’s Young’s modulus in dry state shown for the
spherical (S-RVE) and the cylindrical (C-RVE) geometries for (i) Edry¼ Epm (solid lines)
and (ii) Edry< Epm (dashed lines).
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changing k, the relationship between water uptake and the nano-
structure of a constrained membrane (e.g. cluster size, inter-cluster
distance) must be investigated more fully.

In previous studies, the radius of the clusters has been shown to
increase from w1 nm in dry membrane up to 4–6 nm depending on
the water content [11,18,19,21–23]. Since normalized dimensions
(e.g. stretch, strain) are used in the model, the pressure formulation
is independent of the actual values of the cluster radii. Therefore,
with a little modification, the proposed model can possibly be used
to investigate the effects of a non-uniform cluster size distribution
(CSD) and water content gradients [20,31,77]. Also, the modeling
framework presented here may prove to be helpful for studying the
time-dependent swelling behavior, which is important to the
understanding of sorption dynamics.

We see that this mechanics-based model is able to capture and
explain a number of phenomena associated with swelling of PFSA
from a mechanical perspective. The model is based on the following
nano-structural and material properties: (i) the assumed RVE
geometry, (ii) the non-affine swelling behavior and (iii) Young’s
modulus and molecular weight of the polymer. Consequently, we
believe that the proposed modeling approach provides a flexible
framework that can be used to investigate the swelling pressure
and sorption behavior of other ionomers with various nano-
structures and non-affine swelling behaviors.

7. Conclusion

We developed an analytical mechanics-based modeling frame-
work using the concept of non-affine swelling as applied to several,
simple RVEs to describe the swelling pressure of PFSA ionomers.
This work is aimed at explaining and correlating experimental
observations of non-affine swelling with the nanostructure and
temperature-dependent sorption behavior using an analytical
model based on a mechanical (rather than energetic) approach.
Thus, the water uptake behavior is discussed to demonstrate
further capabilities of the proposed formulation and to examine
other effects of the model parameters and RVE geometry. In this
work, we focus primarily on PFSA membrane to validate our model
due to the large body of experimental evidence on both the
nanostructure and sorption behavior of this ionomer. However, the
modeling framework can easily be extended to characterize other
solvent–polymer systems and ionomers provided that the basic
physical and structural properties are known.

The deformation of the polymer matrix due to swelling is
modeled by hypothetical, linear elastic spring elements located
between the inner and outer radii of the RVEs. Thus, the swelling
pressure is assumed to be proportional to the spring stiffness, (the
temperature-dependent Young’s modulus of the polymer matrix)
which can account for the temperature-dependent sorption
behavior. According to the proposed model, swelling pressure
increases with increasing water content due to the growth of the
clusters, which in turn, causes compression in the polymer matrix.
We have shown that the non-affine swelling behavior reduces the
matrix pressure relative to a purely elastic affine deformation.
Therefore, the affine swelling assumption (as in the classical elas-
ticity formulation) significantly over-predicts the swelling pressure
developed in PFSA membranes.

At lower water content, both RVEs examined in this work
generate theoretical sorption isotherms, which accurately predict
the experimental data. However, the cylindrical RVE appears to give
better predictions at higher water contents. Moreover, as the
temperature increases, the model predicts an increase in water
uptake, in agreement with the experimental observations for the
sorption behavior of predried PFSA membranes found in the litera-
ture. Also, residual water present in a non-predried membrane
initially, increases the subsequent water uptake. The water uptake is
found to decrease with increasing backbone stiffness and with
decreasing degree of non-affine swelling. These two effects are
important since they indicate that the water uptake behavior, which
is vital, for example in fuel cell applications, can be influenced by
controlling the mechanical properties of the membrane backbone,
or altering the mechanical constraints on the membrane swelling.
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